Vivimos una interfase de incertidumbre global. Siempre hubo incertidumbre. Pero a veces, pareciera, lo cubre todo. Sin embargo, hay herramientas, por suerte siempre hay cajas de herramientas. Como una ecuación, por ejemplo, que nunca explica consistentemente todo lo que se aboca a explicar, pero puede arrojar luz sobre un acontecimiento, aproximarse a un problema desde un enfoque integral. Y su alcance explicativo tiene, otra vez, incertezas. Aparecen anomalías, por suerte hay anomalías, que emergen como los tiempos entremezclando el espacio. Entre esa suerte de fórmulas ubicuas pero incompletas, está la ecuación logística, que no es más, ni mucho menos, que una sencilla función:

En el denominador, al uno se suma una exponencial. Intento decir lo mismo de otra manera: uno sumado a la exponencial denomina la función. O al menos denomina la amplitud que es A. En la Figura 1 se muestran gráficos de esta función fx para distintos valores de los parámetros A, valor máximo de la curva;  x0, ese punto para el cual la curva llega al igual de la mitad de amplitud; y k, la inclinación, la tasa de crecimiento logístico, parámetro controlado, por ejemplo, con el distanciamiento social en épocas de pandemia.

¿Pero por qué es importante comprender cómo funciona esta función? En la Tabla 1 se exponen las aplicaciones más importantes del modelo que ofrece la ecuación en cuestión:

Las relaciones específicas entre los ítems de la tabla quedan como ejercicio para quien lea con interés en los temas de las áreas mencionadas. Hay otros ítems, otros temas, otras áreas donde también funciona muy bien la ecuación.

Vale aclarar, la elección y el orden de los items de la tabla no son sesgados por quien suscribe. En todo caso, hay un sesgo en el artículo en inglés de Wikipedia. La intención de quien suscribe sigue el criterio de búsqueda sobre un plano global. ¿Cómo se unen las partes en la superficie? ¿Cómo hace cada parte al todo de la ecuación? Además, ¿qué relaciona a los objetos modelados más allá de nuestra propia representación? ¿Tiene sentido esta última pregunta?

¿Y qué tal si entrecruzo las palabras de la Tabla, como una suerte de cut-up de la logística? Al fin y al cabo, es la misma ecuación. Quizás se genere alguna que otra reacción de sentido:

hay poblaciones crecientes de materiales

respuestas ecológicas de cultivos

pandemias de la lingüística

agricultura en tumores

innovación en salud

reacción en sociología

regresión de economía

cambio de signo en física

la química artificial

del diagrama neuronal

hay redes exponenciales

máquinas de aprendizaje

hay crecimientos de fases

funciones de lo creciente

de electrón distribución

cuántica inteligente

difusión

Se hizo una suerte de caligrama, un peón que dado vuelta es parecido a un misil. ¿Cómo se desanuda este rollo de conceptos ya anudados previamente no solo por la función? Busquemos en la palabra, otra vez en la palabra: logística viene de logos, de la palabra escribir, pero relativa al cálculo, la lógica matemática. Luego devino en logistique, francés del inglés logistics, palabra bien militar para alojar, transportar, aprovisionar a las tropas de la campaña. Búsquedas de preguntas más que de las respuestas. La pregunta hace a una nueva ecuación. O la destruye. ¿Cómo frenar esta máquina compleja de crecimiento exponencial de riquezas concentradas a costa de regresiones de las grandes mayorías, a costa de las respuestas del lenguaje y la ecología? ¿Cómo cortocircuitar esta perversa logística de la guerra?